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Giv en the attainable set of utility outcomes for a market (with

finitely many traders), its complexity is defined to be the least number

of commodities needed for any market giving the same set. This notion

is investigated both in the case of quasiconcave and concave utility

functions. It is shown that, in either case, there is a dense collection

of attainable sets having complexity at most n(n—l)/2.
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1. Introduction. The question of which n-person cooperative games can

arise from economic markets has generated much recent interest. One aspect
I

of this question concerns representations of “attainable sets” of markets.

In particular, representations are sought which associate with an attain-

able set a market of low “complexity” (that is , a market involving as small

a number of commodities as possible).

• Two classes of markets have been considered in some detail. The

broader class consists of markets in which all of the traders ’ utility

functions are upper-semicontinuous and quasiconcave . We shall show that

all n-dimensional attainable sets of two recent ly-studied types arising

from such markets can be represented by n-trader markets involving at most

n (n—l ) /2 commodities . A consequence of this is that there is a collection

of attainable sets , each of complexity at most n(n-l)/2 , which is dense in

the collection of all n-dimensional attainable sets.

A natural subclass of markets consists of those in which the traders ’

utility functions are continuous and concave. It is known that the

n-dimensional attainable sets of such markets are precisely the convex,

compactly generated sets in Rn. An upper bound on the complexity of these

sets, due to Kalai and Smorodinsky [3), is (n-i)2 - (n-2). In this case

also, we show that a dense collection of such n-dimensional attainable sets

has complexity bounded by n(n-l)/2. This has been conjectured to be the

upper bound over all n-dimensional attainable sets.

Consider a market consisting of a set of traders N {l,2,...

and an rn-dimensional commodity space 1
m 

= {(y ,...,y ): 0 c y~ c 1

for all i}. (We take 10 = R° = {o}.) For any collection (ui}~ .i 
of

utility functions of the traders (real-valued functions on 1m ), the

attainable set of the market is
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A (u

1
,. . . ,u~~) = {xeR~: x < (u1

(y ),. . . ,u~(y~)), where

i m  r ieach y El and 
~
y = (l,. •.,1)}.

This is the set of all utility outcomes which can be achieved by some

distribution of the available commodities among the traders.

A set X in R~ is the comprehensive hull of another set Y if

X = {x~R
X
~: x < y for some yeY); in this case, we say that X is

(comprehensively) generated by Y. It is not difficult to show that if

u1,. . .,u are upper-semicontinuous and bounded, then A (u1,. .,u~
) ~

compactly generated ( generated by a compact set) .

Let U1 be the collection of all upper-semicontinuous, quasiconcave

• utility functions, and let U2 be the subcollection of all continuous,

concave utility functions. For k = 1,2, let Ak(n) be the collection

of all n-dimensional attainable sets of markets in which the traders’

utility functions are in Uk. The extent of A1(n) was investigated in

[ti], [5], 16] and [7); in El], the sets in A2(n) were characterized as

all sets which are generated by convex, compact sets.

Let V be an attainable set in Ak(n). If u1,. . . ,u1~ are functions

in U~ defined on 1m (for some fixed m), such that V = A (u1,. . . ~~~~
then {u1}~~1 will be called a k-representation for V over 1m • The

k-complexity of V is the least m > 0 such that there exists a

k-representation for V over 1m • We use comp V to denote the k-complexity

of V; the context will make it clear whether k is 1 or 2. 
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• 2. Quasiconcave markets. In this section , we consider the attainable sets

of markets in which all traders’ utility functions are upper-semicontinuous

and quasiconcave. Therefore, we direct our attention to 1-representations

and 1-complexity. Without loss of generality, we assume that all

n-dimensional attainable sets under consideration are comprehensively

generated by compact sets lying in the interior of the unit n-cube

Let Dk be the “corner” generated by the point (l,...,l,O)€R
k. In [6]

and [7), n-dimensional attainable sets were represented by utility functions

obtained from constructions which first represented (over f~~) the unions
of these sets with D~. This makes the following result of value.

Theorem 2.1: Let V be generated by a nonempty compact set in

• 
• I’~. For I < k < n, let V1~ = {xeRk: (x ; 0)eV} and let Vk = V~ U Dk. If

each Vk is an attainable set (in A1(k)), then V is an attainable set

(in A1(n)), and comp V < 

k~l 
comp Vk.

Proof: Let ck comp Vk, and c = Zck. Assume that Vk A(u1,. . .
where all u~ (1 < i < k) are defined on 1 k Represent any ~€1

c as

x (lx,...,11x) ,  where kxEI
Ck Define u.(x) = mm (u~(

’x),...,u~(
’1x)).

We shall verify that V A (u1,... ~~~~ from which the upper bound on the

complexity of V follows immediately.

Consider any z = ~~~~~~~~~~ E A (u
1
,...,u~

) . There is some allocation

(x~,...,x
”), with each x’€I° and ~~ = (l ,...,l),  such that u

~
(x’) > z~

for all I < I < n. Therefore, by definition, u1(~
x’) > z~ for all j  > I.

Hence, ~
(k) 

= (z •. ,zk)EVk for all. 1 < k < ii. If j v~, then

~
(k) c (l,...,l,0) and therefore Zk < 0. Let i~ = max (0, (k:

• If ~ = 0, then z < (0,...,O) V. If ~ > 0, then z~~~~V’ and
— k

z < (z ;O)€V. In either case, we conclude that z€V (and , indeed,

= n ) and therefore V . A(u1,...,u ) .n

- ••_•_••s_••••.•_ —.—~~~•.—•s.-.—~~•-.- .. _~~~ .~~~• • _~._.. ~~~~~~~~~~~~~~~~~ - _• ~~~~~~~~~~ .. — - - • - . . •~~~~~• • • ~~
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. . (k)
On the other hand, given any zEV , it follows that each z

S (zl,...,zk) € V~ 
C Vk. 

k •  
each 1 < k < n , let ( x ,... , x ) be an

allocation, with each x’€I k and 
~~ 

x~ = (1,... ,l) ,  such that

< (u~(
kx1),... ,u~(

kxk))EVk. Define x1 
= (O;1x~,. . . ,~ X1)€IC for each

1 < I < n. Then z < (ui(x
’),...,un(x~

)), and therefore V c

• 
• Finally, it may be observed that the construction of each u1 from

the u~ (k > i) preserves both upper-semicontinuity and quasiconcavity.

This completes the proof of the theorem.

A set V c RT1 is finitely generated if it is the comprehensive hull

of a finite set (that is, if V is the union of a finite number of corners);

V is convexifiable if it is compactly generated and there exists a col-

lection {g1,. . . ,g~} of strictly increasing, continuous functions such that

V {g , • •  ~~~~ 
= {xER n : x < (g1(y 1), . ..  ,g~ (y~ )) for some yEVI

is convex.

Let V be generated by a set in I~ . It has been shown that if V

is finitely generated (see [6)) or convexifiable (see [7]), then is

an attainable set of complexity at most n-l. Since these properties, of

being finitely generated or of being convexifiable, are inherited by all

V~(l < k < n), an application of the theorem yields the following result.

Corollary 2.2: If V c R~
’ is finitely generated or convexifiable,

then V is an attainable set (in A1(n)), and comp V < n(n-1)/2.

Since the f initely generated sets are (Hausdorff) dense in A1(n)

([2, Theorem 2]), we can state the following.

Corollary 2.3: A1(il) has a dense subset consisting of attainable

sets of (1-) complexity no greater than n(n-l)/2 .
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3. Concave markets. We now turn our attention to the attainable sets of

markets in which all traders’ utility functions are continuous and concave,

and in consequence we consider 2-representations and 2-complexity. Without

loss of generality, we continue to assume that all n-dimensional attainable

sets under considerat ion are generated by (convex, compact ) sets lying in

• the interior of I~ . For any h > 0, let D
k
(h) be the corner generated

by the point (1, . . .  ,l ,_ h )€ R k . In [1), n-dimensional attainable sets were

represented by utility functions obtained from contructions which first

represented (over I~~
l) the convex hulls of the unions of these sets with

• sets Dn
(h )

~ 
for large values of h. Therefore•, a variation of the theorem

of the previous section will be broadly applicable.

Let V be generated by a convex compact set in I~ , and , as before,

let V~ = {xER k : (x ; O )€ V ) .  For 2 < k < n, let V~~1 
x R

1 
= {xER k :

(x 1, . .  . ,xk l
) € V’k l } be a cylinder with cross-section V~_1. We define

J V~ = (01 and V~ x R
1 

= R1. For any h > 0, define vk(h) to be the

(comprehensive ) convex hull of V~ u Dk(h). Each Vk
(h ) is generated by

a convex compact set , and is therefore an attainable set (in A2(k)).

We say V is resolved by a sequence of non-negative numbers h1,...,h~

if for all 1 < k < fl~ vk(hk) n (V~_1 x R
1) = V~ ; in this case , we say V

is resolvable.

Theorem 3.1: Let V be generated by a convex compact set in I~ .
n

Assume that V is resolved by h1,... ~hn~ 
Then comp V < comp Vk(hk ) 

~k=l
n(n—l)/2.

Proof. We begin as in the proof of Theorem 2.1. Let = coinp Vk(hk),
and c 

~
C
k

• Assume that Vk(hk) ~~~~~~~~~~~ where all ~J. c i < k)

are continuous concave functions defined on I . Write xci as

- - - • -- - - - —S.-- .— • ——— --- — — — •_ •_ •_____k —S.- -~~~~~S.
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C . .1 n k k . . i i .  n n
• . x = ( x,..., x), where xci ., Define u ., (x )  = mm (u . (  x),...,u.( x)).

The construction of the functions u1,...,u~ yields continuous concave

funct ions on 1
C~ Therefore , it will suffice to verify that

V A (~1,:. ~~~~~~ 
(k )Consider any z = (z1,. . . ,z ) e A (u 1,. . ., u ) . Then each z =

k• (z
1,. ..,Zk

) € Vk(hk ). Assume that, for some 2 < k < n, z ~ V~.

Since V is resolved by h1,. . . ,h~ , Vk(hk ) n (V~~1 x R
1) = V~ ; therefore

• z~~~ ~ V~~1 
x R1, and hence ~

(k_l) 
~ V~~1

. Now, assume that

z j V = V’ . From the result just established, it follows inductively

that ~~~~ j  V~ for all I. < k < n. But z~~~eV
1

(h
1

) = V~. This

cr ction affirms that z€V . Therefore, V ~~ A(u~ ,. .

• ~he other hand , it follows as in the proof of Theorem 2.1 that

Therefore V = A(u1,. . .,u~ ), and the complexity of V

is no greater than c = comp vk(hk) . The second inequality follows
k l

from the observation that for any 
- 

h ~ 0 , comp vk(h )  
~ 
(k-l); see [1].

Tn the remainder of this section, we will show that there is a dense

(in the sense of the Hausdorff distance) collection of resolvable

n-d imensional attainable sets. This class consists of those attainable

• sets having a (unifo rmly) positive normal at every nonnegative boundary

points; these will be referred to as positively supported sets. Speci-

fically , an n-dimensional attainable set V is said to be (uniformly)

S positively supported if there exists a closed set Q c {qc R~ ~ 
q1 = 1, q > 0)

so that for each xeaV n R~, there is a qcQ for which (x,q),~ ~~~~

for all ycV . Here ~V denotes the boundary of V, R , the nonnegative

orthant in R1’, and (., •),the usual inner product on Re.)

Lemma 3.2: If V is positively supported then V is resolvable .

• - - - ~~~~~~~~~~~~~~~~ 
-

~~~~~~~ — - - S.-. -~~~~~~
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Proof: Let Q be the set of normals specified in the definition. Let

= 0 and , for 2 c k < n, let h
k 

= max { 
~ ~./c~IqcQ} > 0. We shall
i<k

show that V is resolved by the sequence h1,h2 , . .  . ,h .  Since , for

1 < k < n, we always have

~

• 

. 

V
k

(h
k

) n (V~~1 x R
1) V~ (3.2.1) -

•

and, for k = 1, equality is clear, it is enough to show the other

inclusion for k > 2. 
-

Suppose XER
k is an element of the left-hand side of (3.2.1) . If

xk .~~~ 0, then since (x
1
,.. . ,xk l

) c ~~~~~ we must have (x 1,.. .,xk l , O) c V~

and so x c V~ . If X
k 

> 0, then since x E vk
(h
k

) , we must have x ~ x

where-

0 ~ 
= Ày + (1—A) (l,l,...,l,_hk

) c Vk(h
k
), (3.2.2)

yeV~ n R~ and 0 < A < 1. We show ~~~~ and so xcV 1~ by comprehensiveness.

• If x iV~ then there exists v€a V~ , 0 < v  < x , v x . Since

(v ;O ) ca V n R~, there is a qeQ so that

~~~q(k ) ) >  (v ,q~~~~) ~ (z ,q~~~ ) (3 .2 .3)

for all zcV~, where q(k) = (q1,. . . ~~~ > 0. Further,

(v,q~~~ ) ~ 0 ~ - hkqk ((l,1,...,l,_h~ ),q~~~)

so (v ,q~~~ ) ?. 4,q~~~) fo::ll zEVk(hk). This contradicts (3.2.2) and
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(3.2.2), establishing XEV
(. In either case, we have xeVj( arid thus have S

S shown (3.2.1) to be an equality, completing the proof.

It seems intuitively clear that the positively supported attainable

sets are dense among all such sets. We outline a proof here for complete-

ness. We denote by d the Hausdorff distance induced by the norm

H x = max lxii.l<i<m

Suppose V is an n-dimensional attainable set (generated by a compact

n •convex subset of I ). We can write

V = {xcR 5
~ (x,p) < a~ for peS)

where s = {peR
~ I ~ 

p. = 1) and a = sup (x,p). Note that a , the
i 1  xeV p

support function of V, varies continuously for peS. For 0 < € < 1/n, —

define

• V~ {xeR ~~ (x,p) ~ a~ for peQ~
) -

where Q
~ 

= {qcSJq 1 ~ c for all i}.

Lemma 3.3: The sets are positively supported and d(V,V~ ) ÷ 0 as

E - ~~0.
E n c

Proof: V~ is positively supported since for xeaV n R+ , there is a p€ Q

such that (x ,p) = a~ > for all Y€V~ 
(otherwise x would be in

the interior of Vi ) .

Since d(V ,V~ ) < d (V n R~, V~ ri R~ ) and V~ ~ V, it is enough

show that , given n > 0, there is ~ > 0 so that for e < ~ and

I •~~~~
_ fl~ • •~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .~~ ~~~~~~~~~~~~~~~~~~~~~~~
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xcV
t\V, x ~~. 0, there is y€V , y ~ 0 so that l i x  - y1 I < 71 .
Let Co 1/2n. The function f(z,p) =~~z,p) - a~ is uniformly

continuous over (yE 0 fl R~
) x S and so there is an c < CO so that for

ZcV C 
, z ~ 0, and p~qcS , we have 1k - pH  < € implies f ( z ,q) - f ( z ,p)I 5. n .

Take € < ~ and xeV~\V, x > 0. Let q€S maximize f(x,p) over S.

• Since x€V~\V, 6 = f (x ,q) > 0 but f(x,p) ~~ . 0 for p€Q~ . Now let

z = x - (6 ,6,...,6). Then z€V and y = z
+
E V n  R~ where (z +)i = max(z 1,0).

F’urther z~~~y 1x , so

l i x  — yH ~ l i x  — zil = 6

‘4
proving the lemma .

Combining (3.2) and (3.3), we have our final result.

Theorem 3. L:~ A2
(n )  has a dense subset consisting of attainable sets of

(2-) complexity no greater than n(n-l)/2.
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